CS 134: Elements of Cryptography and Computer + Network Security
Winter 2015

sconce.ics.uci.edu/134-W15/

CS 134 Background

- 11:00-12:20 @ DBH 1500
- Discussions section – as needed (must register!)
- Senior-level undergraduate course
- Some overlap with CS 203 / NetSYS 240 (graduate)
- Offered since 2002
- Last time Winter 2014
Why (not) take this course?

• Not required for any track or concentration
 – listed as an option in two specializations
• Difficult course material
• There’ll be some weird math
• Tough grading
• Lectures often not available ahead of time
• There is no second chance if you mess up
• There is no drop after second week
• No Pass / No-pass option

Contact Information

• Instructor: Gene Tsudik
 – Email: gene.tsudik *AT* uci.edu
 – Office: DBH 3228 (office hours only)
 – ICS1 458E otherwise (for urgent matters only)
 – Office Hours:
 • Mondays, 11-noon
 • More if needed, e.g., before finals or if out of town on Monday
 • Otherwise, by appointment: contact by email to set up

• TA: Tyler Kaczmarek
 – PhD student, research in security & privacy
 – Email: tkaczmar *AT* uci.edu
 – Office Hours:
 • Wednesdays, 2-3pm @ ICS1 468
 • More if needed
Prerequisites

Ideally, at least 2 of:

– Operating systems (CS 143A)
– Distributed systems (CS 131)
– Computer networks (CS 132)

AND:

– Design/Analysis of Algorithms (CS 161)

Class Info

• Lecture format
 – lecture slides (not always posted before class)
 – 2-3 guest lectures
 – 19 lectures total + midterm

• Course website:
 sconce.ics.uci.edu/134-W15/
 • check it regularly
 • news, assignments, grades and lecture notes (in PDF) will all be posted there

• Read your email
Course Textbooks/Readings

“Sort of” REQUIRED:

Charlie Kaufman, Radia Perlman, Mike Speciner

OPTIONAL:

Cryptography: Theory and Practice, 3rd edition
Douglas R. Stinson

Also:
Cryptography and Network Security, 4th edition
William Stallings

Course Grading

• Midterm (25%)
• Final (25%)
• 3 Homeworks (15% each)
• 5% for attendance / participation / enthusiasm

BTW:
• I may or may not grade on a curve
• I will not hesitate giving C-s and worse...
Student Expectations

• Keep up with material
 – complete relevant readings before class
 – browse lecture slides
 • Slides will be on-line the same day, after class
• Attend lectures
• No excuses for not reading your email!
• Exams and homework:
 – No collaboration of any sort
 – Violators will be prosecuted
 – An F in the course is guaranteed

Drop Policy

• Drop anytime during first 2 weeks...
 • Deadline – January 16
• Thereafter, no drop
• Incompletes to be avoided at all costs
• But,…I have to graduate this quarter 😊
and remember:

- This is not a course for wimps
- You don’t have to be here
- This course is not required
- I am not flexible

However:

- You might have fun...
- I will certainly make mistakes – point them out!
- I want your feedback
- Please ask lots of questions
Complaints about:

- Course content: to me
- Course grading: to me
- TA: to me
- Instructor, i.e., me:
 - ICS Associate Dean of Student Affairs
 or
 - Computer Science Department Chair

Today

- Administrative stuff
- Course organization
- Course topics
- Gentle introduction
Course Topics – tentative and unsorted

- Security attacks/services
- Conventional cryptography
- Public Key cryptography
- Key Management
- Digital Signatures
- Secure Hash Functions
- Authentication + Identification
- Certification/Revocation

- Wireless/Mobile Net security
- DDOS attacks and trace-back
- IP security
- Firewalls
- SSL/TLS
- Kerberos, X.509
- Access Control (RBAC)
- E-cash, secure e-commerce
- Mobile code security
- WSN security
- RFID
- Trojans/Worms/Viruses
- Intrusion Detection

Focus of the class

- Recognize security attacks/threats
- Learn basic defense mechanisms (cryptographic and otherwise)
- Appreciate how much remains to be learned after this course

BTW:
- You certainly won’t become an expert
- You might be (I hope) interested to study the subject further
Outline

• The players
• Terminology
• Attacks, services and mechanisms
• Security attacks
• Security services
• Methods of Defense
• A model for network Security
Computer Security:
The cast of Characters

Attacker or Adversary

Your computer

Network Security:
the cast of characters

Alice

communication channel

Bob

EVE
Terminology (crypto)

- Cryptology, Cryptography, Cryptanalysis
- Cipher, Cryptosystem
- Encryption/Decryption, Encipher/Decipher
- Privacy/Confidentiality, Authentication, Identification
- Integrity
- Non-repudiation
- Freshness, Timeliness, Causality
- Intruder, Adversary, Interloper, Attacker
- Anonymity, Unlinkability/Untraceability

Terminology (security)

- Access Control & Authorization
- Accountability
- Intrusion Detection
- Physical Security
- Tamper-resistance
- Certification & Revocation
Attacks, Services and Mechanisms

- **Security Attack**: Any action that aims to compromise the security of information
- **Security Mechanism**: A measure designed to detect, prevent, or recover from, a security attack
- **Security Service**: something that enhances the security of data processing systems and information transfers. A "security service" makes use of one or more "security mechanisms"
- **Example**:
 - Security Attack: Eavesdropping (Interception)
 - Security Mechanism: Encryption
 - Security Service: Confidentiality

Some Classes of Security Attacks

- (b) Interruption
- (c) Interception
- (d) Modification
- (e) Fabrication
Security Attacks

- **Interruption**: attack on availability
- **Interception**: attack on confidentiality
- **Modification**: attack on integrity
- **Fabrication**: attack on authenticity

Main Security Goals
Security Threats
threat vs attack?

Example Security Services

- **Confidentiality**: to assure information privacy
- **Authentication**: to assert who created or sent data
- **Integrity**: to show that data has not been altered
- **Access control**: to prevent misuse of resources
- **Availability**: to offer permanence, non-erasure
 - **Denial of Service Attacks**
 - *e.g.*, against a name server
 - **Viruses that delete files**
Some Methods of Defense

- **Cryptography** → confidentiality, authentication, identification, integrity, etc.
- **Software Controls** (e.g., in databases, operating systems) → protect users from each other
- **Hardware Controls** (e.g., smartcards, badges) → authenticate holders (users)
- **Policies** (e.g., frequent password changes, separations of duty) → prevent insider attacks
- **Physical Controls** (doors, guards, etc.) → control access